با توجه به اتمام بخش آموزش های مقدماتی و متوسطه فارسی سالیدورک، بر آن شدیم که به تدریج برخی از نکات و آموزش های تخصصی سالیدورکز را در این بخش از وبلاگ قرار دهیم. برای مطالعه این آموزش ها به ادامه مطلب مراجعه نمایید.

 

لینک دانلود جزوه و فایل آموزش فارسی سالیدورک

http://solidworks-training-iran.persianblog.ir/post/61

ARACO Website

 

لینک صفحه آموزشهای مقدماتی و متوسطه سالیدورکز

http://solidworks-training-iran.persianblog.ir/post/50

 

برای مطالعه نکات حرفه ای و آموزشهای تخصصی سالیدورک به ادامه مطلب مراجعه کنید.


طراحی پایین به بالا و بالا به پایین – بخش اول 

 Top down design in Solidworks

روش های طراحی پاین به بالا (Bottom-Up) و بالا به پایین (Top-Down) از روش های تحلیل داده هستند که در شاخه های طراحی دستگاه، نرم افزار، تئوری های علمی و مدیریت استفاده می شوند. در عمل این دو، روش هایی برای طرح و اجرا، تدریس و هدایت هستند.

در روش طراحی بالا به پایین که همچنین به نام تجزیه (Decomposition) شناخته می شود، سیستم به اجزای کوچکتر تقسیم شده و در هر زیر مجموعه یا عضو، امکان تجزینه و بررسی دقیق تر وجود دارد. در روش بالا به پایین، کلیتی از سیستم طبقه بندی می شود اما جزئیات مشخص نمی گردد. سپس هر زیر مجموعه با جزئیات بیشتری مورد بحث واقع می شود و این تقسیم بندی و طراحی، تا زمانی که تمامی اجزاء بصورت قطعه واحد مشخص شوند، ادامه می یابد. طراحی بالا به پایین معمولا به کمک اجزاء فرضی انجام می شود که به آنها جعبه سیاه (Black Boxes) می گویند، از این رو که محتویات داخل این جعبه فرضی (که همان اجزاء و زیرمجموعه های تشکیل دهنده سیستم هستند، هنوز نا مشخص است اما این ساده سازی برای حل مسائل و دستیابی به محصول نهایی مورد نیاز است. در هر صورت گاهی نیز امکان دارد که زیر مجموعه ها و اجزاء در نظر گرفته شده برای سیستم (Black Boxes) قابل حل نبوده و یا دستیابی به مکانیزم و توان سخت افزاری برای رسیدن به بازخورد مورد نظر بسیار دشوار و یا غیر ممکن باشد. برای مثال مدیر یک شرکت خودرو سازی تصمیم میگیرد خودرویی با حداکثر سرعت 300km/h و مصرف سوخت 5L/100km تولید نماید. پس از بررسی طرح و تجزیه آن به زیر مجموعه های لازم، متخصصان بخش موتور و پیشرانش با بررسی و تحلیل به این نتیجه می رسند که دستیابی به این هدف عملی نخواهد بود مگر آنکه وزن کل خودرو کمتر از 800Kg باشد. این بازخورد به بخش طراحی بدنه ارائه شده و کارشناسان بخش بدنه نیز راه حل های خود را ارائه می دهند. ممکن است در نهایت تیم مدیریت به این نتیجه برسد که هزینه پروژه تحقیقاتی بالغ بر 50 میلیون یورو و قیمت تمام شده محصول 500 هزار دلار برای تعداد 100 هزار دستگاه در سال خواهد بود. پس از ارائه این اطلاعات به بخش بازاریابی، این بخش نیز اظهار نظر خود را ارائه می دهد: محصول مورد نظر با مشخصات ارائه شده با این قیمت در بازار کشش نداشته و هدف گذاری برای فروش 100 هزار دستگاه از آن محقق نخواهد شد.

این بازخورد باعث می شود که از ادامه پروژه صرف نظر شده و یا مشخصات فنی تغییر و تقلیل داده شود. طراحی بالا به پایین با ایجاد یک تصویر کلی شروع شده و با تبدیل آن به اجزای کوچکتر ادامه می یابد. این پروسه تا حدودی مشابه با نمای انفجاری است که در طراحی یک مجموعه برای درک بهتر از اجزای سازنده آن ترسیم می شود. 

تصویر شماره 1 : نمای انفجاری یک موتور رفت و برگشتی

 

 

 

طراحی پایین به بالا و بالا به پایین – بخش دوم 

Top down design in Solidworks

در هفته گذشته در خصوص روش های طراحی بالا به پایین (Top-Down) توضیحاتی ارائه شد. اشاره شد که طراحی بالا به پایین در واقع بررسی یک تصویر کلی و تقسیم آن به بخش های کوچکتر با جزئیات بیشتر است. در ادامه به بررسی روش پاین به بالا (Bottom-Up) می پردازیم.

روش طراحی پایین به بالا استفاده از یک بستر موجود برای رسیدن به یک مکانیزم کامل تر و یا یک دستگاه پیچیده تر است. برای مثال تیم طراحی شما موفق به ساخت یک موتور 4 سیلندر خطی با بازدهی مناسب و استهلاک پایین شده است. محصولی که توان رقابتی بسیار بالایی در بازار را دارد. با توجه به تنوع محصولات شرکت و تقاضای بازار، دستور طراحی یک موتور با 50 درصد توان بیشتر برای رده محصولات لوکس شرکت به بخش پیشرانه که شما مدیریت آن را بر عهده دارید صادر می شود. تیم تحت مدیریت شما تصمیم می گیرد با توجه به موفقیت های موتور چهار سیلندر، از بستر موجود تا حد ممکن استفاده نماید. در این مواقع معمولا بخش پیشرانه شرکت های خودروساز با استفاده از حداکثر تجهیزات مشابه اقدام به ساخت موتوری با تعداد سیلندر بالاتر می نماید اما بخش هایی مانند محفظه احتراق، پیستون و شاتون، سوپاپ می نماید. این تصمیم و استفاده از بستر موجود، امکان کاهش هزینه ها و زمان تحقیق و توسعه، همچنین هزینه های تولید را فراهم آورده و ریسک های پروزه را تا حد ممکن کاهش می دهد. لازم به ذکر است روش طراحی پایین به بالا به اندازه روش طراحی بالا به پایین آینده نگرانه و پاسخگوی نیازها نخواهد بود. هرچند هیچ یک از این روش ها به تنهایی پاسخگوی نیازهای تحقیق و توسعه و حل مسائل نیستند و از تمامی روش ها باید در محل مناسب استفاده کرد، اما برای مدیریت یک پروژه صنعتی، آگاهی از نحوه مناسب رسیدن به جواب بسیار حیاتی است.

تفاوت روش ها و پروسه رسیدن به محصول در دو روش طراحی بالا به پایین و پایین به بالا در دیاگرام زیر مشخص شده است. 

تصویر شماره 2 : پروسه طراحی در دو روش بالا به پایین و پایین به بالا

 

  

طراحی مکانیکی – محدودیت های طراحی – بخش اول 

طراحی مکانیکی که از زیر شاخه های طراحی مهندسی است به بخشی از پروسه طراحی اطلاق میگردد که در آن بخش مکانیکی یک سیستم یا دستگاه طراحی می شود. این بخش میتواند شامل بدنه یا سازه یک مجموعه، مکانیزم محرک و متحرک و یا سایر بخش های مکانیکی باشد. در طراحی دستگاه و تجهیزات صنعتی، شاخه های متفاوتی از فن و دانش لازم است و بدون شک یکی از اصلی ترین این شاخه ها، طراحی مکانیکی است. با وجود پیشرفت های قابل توجهی که بویژه در دهه های اخیر در طراحی و تولید بوجود آمده (از نرم افزار های CAD/CAM/CAE تا دستگاه های CNC و Rapid Prototyping(3D-Printer) برای طراحی مکانیکی یک دستگاه صنعتی یا حتی یک قطعه واحد، محدودیت هایی وجود دارد. برای تبدیل شدن به یک مهندس و طراح توانمند، تنها تسلط به نرم افزارهای طراحی کافی نخواهد بود. مشکلی که امروزه اکثر دانشجویان و فارغ التحصیلان رشته های طراحی و مهندسی با آن دست به گریبان هستند، عدم توجه به بخش عملی و تمرکز بر روی تئوری های طراحی است. مشکلی که باعث افزایش فاصله قشر دانشگاهی از بخش صنعت شده، عدم اعتماد بازار کار از یک سو و مشکلات صنایع در بخش های تولید و تحقیق و توسعه از سوی دیگر از نتایج ملموس آن است.

در این سری مقالات تلاش می شود تا با اشتراک برخی از تجارب و راهکارهای عملی، تفکر قشر دانشگاهی به نیازهای صنعت نزدیکتر و در نتیجه دانشجویان و فارغ التحصیلان رشته های فنی، امکان بیشتری برای بروز خلاقیت ها، ایده ها و طرح های خود با قابلیت عرضه و برآورده کردن نیاز های صنعتی را داشته باشند.

همانگونه که ملاحظه می شود، محدودیت های فنی تنها یک بخش از محدودیت های طراحی است و حتی اگر شخصی در زمینه های فنی تجربه کافی را داشته باشد، بدون توجه به سایر الزامات و محدودیت های طراحی، لزوما موفقیتی تضمین شده نخواهد داشت. ممکن است بسیاری از افراد ایده های کاربردی مشتری پسندی داشته باشند، اما بدلیل عدم توجه به محدودیت های طراحی، موفق به عملی کردن ایده های خود نشوند.

 

 

 

طراحی مکانیکی – محدودیت های طراحی – بخش دوم 

در مطلب پیشین کلیاتی در خصوص محدودیت های طراحی و تأثیر این محدودیت ها در موفقیت یک طرح بیان شد. چنانچه ذکر شد محدودیت های فنی تنها یک بخش از محدودیت هایی هستند که یک طراح چیره دست و با تجربه باید برای طراحی دستگاه صنعتی و یا یک وسیله یا تجهیز مد نظر قرار دهد. البته محدودیت های بیان شده شامل تمامی موارد نبوده اند. با توجه به کاربری یک دستگاه و عمومیت آن، این محدودیت ها می توانند بسیار متفاوت باشند. برای مثال زمانی که شما محصولی مانند یک گوشی موبایل را طراحی می کنید که به یک سری شاخص از محصولاتتان تبدیل شده و رقبای شما بطور منظم، هر ساله در موعد مشخص محصول جدید خود را معرفی می کنند و در این رقابت شما نیاز دارید تا پا به پای آنها پیش بروید، محدودیت زمانی بسیار حائز اهمیت می شود. از سوی دیگر محدودیتی مانند محدودیت های سیاسی در بسیاری از کشور مد نظر قرار می گیرد که برای مثال می تواند شامل موارد زیر شود:

1- تا جای ممکن از تجهیزات سیستم های زیر مجموعه ساخت داخل استفاده شود. این اقدام هم از منظر سیاست اقتصادی (بدین ترتیب که با استفاده بیشتر از تجهیزات بومی موجب رونق صنایع داخلی و جلوگیری از خروج ارز از کشور خواهیم شد) و هم از منظر سیاست های امنیتی (بویژه در خصوص تجهیزات نظامی که دارای بخش های الکترونیکی هستند و یا زیرمجموعه هایی از یک دستگاه که ممکن است شامل تحریم ها باشند) اهمیت فراوانی دارد.

2- طراحی به گونه ای انجام شود که مهندسی معکوس و استفاده از آن برای سایر شرکت ها پر هزینه تر و با دشواری های فنی همراه باشد.

 

 

 

طراحی مکانیکی محدودیت های طراحی بخش سوم محدودیت اقتصادی 

در ادامه آموزش های عملی طراحی، این هفته به بخش دیگری از محدودیت های طراحی با ذکر مثال اشاره می شود. همانگونه که می دانید امروزه پیشرفت قابل توجهی در زمینه تکنولوژی نمونه سازی سریع (Rapid Prototyping) بوجود آمده. یکی از این پیشرفت ها فن آوری چاپگر های سه بعدی است. در حال حاظر چاپگرهای سه بعدی بصورت عمده تولید می شوند و کاهش قیمت خود این محصولات، به همراه تکنولوژی مدلسازی سه بعدی توسط نرم افزارهای طراحی کامپیوتری (CAD) مانند سالیدورکز کمک شایانی در جهت کاهش زمان و هزینه طراحی نمونه سازی دستگاه های صنعتی کرده است. با این وجود یکی از محدودیت هایی که همیشه در رده بالاتری نسبت به تکنولوژی قرار می گیرد، محدودیت اقتصادی است.

در آلمان، ژاپن، اتریش، چین و سایر کشورهای صنعتی دنیا، هنوز بسیاری از قطعات یک دستگاه با ماشین های تراش دستی ساخته می شوند. برای مثال در شرکت بزرگ جنرال الکتریک آمریکا  (GE) که سازنده انواع توربین، ژنراتور، موتور های الکتریکی پیشرفته، موتور های احتراقی رفت و برگشتی، لکوموتیو و ... است، هنوز بسیاری از قطعات حساس توربین بصورت دستی جوشکاری می شود و بسیاری از فرآیند های ساخت و کنترل کیفی، توسط انسان انجام می شود. لذا این تفکر که تمامی پروسه ها باید بصورت اتوماتیک انجام شود و هر نوع قطعه ای توسط ماشین آلات اتوماتیک ساخته شود، منجر به کاهش قابلیت رقابت (از نظر قیمت) خواهد بود و نهایتا ممکن است به حذف آن تولید کننده از بازار بیانجامد. البته لازم به ذکر است انجام پروسه های غیر اتوماتیک نیاز به تخصص بالایی دارد اما در هر صورت عامل اصلی تعیین کننده پروسه ساخت شرایط اقتصادی است.

امکان ساخت بدنه یک خودرو با روش های دیگر وجود دارد. حتی با پرینتر های سه بعدی نیز امکان ساخت قطعات بزرگ در حال حاظر وجود دارد. اما نکته حائز اهمیت در انتخاب صحیح روش ساخت، علاوه بر توجه به ویژگی های مکانیکی قطعات، هزینه تمام شده نیز می باشد. هنر یک مهندس طراح تنها به خلاقیت خلاصه نمی شود. بلکه طراح خبره کسی است که با ترکیب خلاقیت و تجربه، طرحی را ارائه کند که علاوه بر رعایت جنبه های کیفی، قابلیت تولید و رقابت را نیز در بازار داشته باشد و یکی از مهمترین فاکتورهای قابلیت رقابت، بدون شک قیمت تمام شده است.

 

 

 

طراحی مکانیکی – محدودیت های طراحی – بخش چهارم – محدودیت های تولید

بدون شک یکی از مهمترین محدودیت هایی که باید  در طراحی مد نظر قرار گرفته شود، محدودیت های تولید است. محدودیت های تولید بصورت کلی به چهار دسته تقسیم می شوند:

برای مثال یکی از نکات مهم طراحی تجهیزاتی و دستگاه هایی که به تولید انبوه می رسند، بحث دور ریز ها است. فرض کنید قطعه ای از دستگاه شما نیاز به عملیات ورق کاری داشته باشد. برای طراحی این قطعه، باید این نکته را در نظر داشته باشید که ابعاد ورق اصلی که قطعه ورق کاری باید از آن بریده شود چیست. طراحی که بتواند با استفاده از کمترین مواد، کارایی محصول خود را حفظ کند، تأثیر به سزایی در کاهش قیمت محصول نهایی خواهد گذاشت و در نتیجه آن قابلیت رقابت را بالا برده است. یکی دیگر از محدودیت های مهم طراحی قابلیت حمل و مونتاژ است. امروزه تقریبا هیچ یک از کارخانجات بزرگ مانند خودرو سازی ها، سازندگان هواپیما و کشتی و بسیاری از تجهیزات دیگر، امکان ساخت تمامی قطعات و زیر مجموعه های محصول نهایی خود را در یک محل ندارند. پس در هنگام طراحی باید این نکته منظور شود که قطعه کجا تولید می شود و چگونه باید به محل مونتاژ برسد. همچنین فرآیند مونتاژ در بسیاری از دستگاه ها و محصولات نیازمند در نظر گرفتن ملاحظات خاصی است. برای جاگذاری موتور غول پیکر یک کشتی نفت کش، روش های بسیار خاصی وجود دارد. همچنین با توجه به ابعاد بزرگ زیر مجموعه ها (برای مثال موتور یک کشتی نفت کش می تواند تا حدود 2300 تن (بیش از وزن 2700 عدد خودروی پراید!) وزن داشته باشد. جابجایی این سیستم عظیم و قرار دادن آن در داخل کشتی به خودی خود پروژه ای زمان بر و هزینه بر است.

بسیاری از دستگاه های صنعتی لازم است در محل نهایی نصب و مونتاژ شوند. برای مثال توربین های بادی که ابعاد بسیار بزرگی هم دارند باید در محل پروژه نصب شوند. در نظر گرفتن نحوه حمل تجهیزات و نصب آنها، نیاز به تجارب و دانش فنی قابل توجهی دارد و بدون توجه به این ملزومات، امکان اجرای طرح بصورت اقتصادی وجود نخواهد داشت.

 

 

 

آموزش پیشرفته سالیدورکز – تخمین هزینه – بخش اول

Solidworks Costing and Sustainability

در سری آموزش های مقدماتی سالیدورک (سالیدورکز) مطالب و نکات مورد نیاز برای طراحی های معمول بیان شد. از این پس آموزش های عملی و پیشرفته سالیدورک در قالب دروس هفتگی به علاقه مندان ارائه می شود.

سالیدورک علاوه بر دستورات متنوع و کاربردی برای مدلسازی، امکانات دیگری در اختیار مهندسان و طراحان قرار می دهد. یکی از امکانات مهم نرم افزار سالیدورک که بسیاری از نرم افزار های مطرح بازار از آن بی بهره اند تخمین هزینه ساخت قطعات و دستگاه ها است. سالیدورکز با در اختیار قرار دادن این امکان به طراح اجازه می دهد تا علاوه بر طراحی قطعه و دستگاه، امکانسنجی اقتصادی تولید آن را نیز بررسی کند. برای برآورد هزینه یک قطعه از تب Evaluate گزینه Costing را انتخاب نمایید. توجه به این نکنه ضروری و مبرهن است که برای تخمین هزینه ساخت یک دستگاه ابتدا باید هزینه ساخت قطعات زیر مجموعه آن دستگاه برآورد شود. برای مثال میخواهیم هزینه ساخت قطعه Anchor Bolt طراحی شده را برآورد کنیم. پس از اجرای دستور، پنجره ای در سمت راست صفحه نمایش باز می شود که به توضیح هر یک از بخش های این پنجره می پردازیم:

Method : روش ساخت قطعه که با توجه به نوع قطعه، نرم افزار سالیدورک روش های معمول را در گزنه هایی به شما ارائه می دهد. برای این قطعه 4 روش بصورت پیش فرض وجود دارد. تراش کاری، ریخته گری، تزریق پلاستیک و پرینت سه بعدی که با توجه به نوع قطعه گزینه تراش کاری (Machining) انتخاب می شود.

Template : در این قسمت سیستم استاندارد مرسوم (سیستم متریک و یا اینچی) مشخص می شود.

Material : اطلاعات مربوط به نوع مواد مورد استفاده (آلیاژ های فولاد، آلومینیوم، برنج یا پلاستیک ها) و در مرحله بعد نوع ماده انتخاب می شود. باکس آخر این قسمت مربوط به قیمت مواد خام است که بر حسب دلار بر کیلوگرم یا پوند تعیین می شود.

 

 

 

آموزش پیشرفته سالیدورکز – تخمین هزینه – بخش دوم

در درس قبلی در خصوص تخمین هزینه ساخت قطعات در سالیدورک با استفاده از Solidworks Costing مطالبی ارائه شد. سالیدورکز همچنین قابلیت تخمین هزینه برای قطعات ورق کاری را نیز دارد. زمانی که از ماژول ورق کاری سالیدورکز (Sheet metal) استفاده می کنید، تخمین هزینه فاکتورهای دیگری پیدا می کند. پس از تهیه مدل ورقکاری و اجرای دستور Costing مانند حالتی که برای قطعه درس گذشته ملاحظه نمودید پنجره ای باز می شود که موارد زیر را باید در آن تعیین کنید:

Method : در این بخش برای روش ساخت دو حالت ورق کاری و فرز وجود دارد که ما حالت ورق کاری را انتخاب می کنیم.

Template : ابعاد استاندارد (متریک یا اینچی) تعیین می شود.

Material : شاخه مواد، کلاس، ضخامت ورق و هزینه مواد (دلار بر کیلوگرم) مشخص می شود.

Blank Size : در این قسمت نحوه محاسبه میزان مواد به کار رفته تعیین می شود. دو راهکار کلی بصورت پیش فرض در سالیدورک وجود دارد . یکی بر اساس وزن قطعه که بیشتر در قطعات ریخته گری کاربرد دارد و دیگری بر اساس قالب استاندارد موجود در بازار. برای مثال لوله، ورق، پروفیل و شمش که در ورق کاری سالیدورک این قالب آماده ورق با ضخامت مشخص است. پس از تعیین ضخامت ورق، ابعاد استاندارد ورق انتخاب می شود. مرحله بعدی تعیین آفست است. میدانید که برای انجام عملیات روی یک قطعه، لازم است حاشیه ای جهت سهولت کار و پیش بینی خطاهای کار و جای ابزار در نظر گرفته شود. گزینه Bounding box Offset برای این منظور است. پس از زدن تیک این گزینه میزان حاشیه از طرفین نیز وارد می شود.

Bounding Box Nesting : در این قسمت سالیدورک بصورت خودکار بهترین چیدمان قطعات را در قالب تعیین شده بصورتی که کمترین دور ریز ایجاد شود انجام می دهد. در این قسمت نیز می توان حاشیه ای برای کل ورق در نظر گرفت. با زدن روی گزینه Show Bounding Box Nesting چیدمان نمایش داده می شود. همچنین میزان هدر رفت مواد نیز محاسبه و نشان داده می شود.

تصویر شماره 1 : چیدمان قطعات در ورق بصورت خودکار در سالیدورک 

Quantity : تعداد مورد نیاز از قطعه طراحی شده در این قسمت تعیین می گردد. با توجه به اینکه سالیدورک در بخش Bounding Box Nesting بصورت خودکار تعداد قطعاتی که از یک ورق می توان ساخت را محاسبه و نشان می دهد، میتوان تعداد قطعات را بگونه ای انتخاب نمود که کمترین دور ریز حاصل شود.

Markup/Discount : در این قسمت تخفیف مورد نظر اعمال می شود.

در نهایت با کلیک بر روی گزینه محاسبه قیمت، قیمت هر قطعه با توجه به داده های ورودی محاسبه و نشان داده می شود.

تصویر شماره 2 : هزینه برآورد شده در سالیدورک برای یک قطعه

 

 

 

آموزش پیشرفته سالیدورک – شیت متال(ورق کاری)– بخش اول

با وجود اینکه سالیدورک (سالیدورکز) تنها یک محیط مشخص برای ساخت قطعات مجزا و یکپارچه دارد، در همین محیط ساده منوهای مختلفی برای مدلسازی در دسترس است. منو هایی برای مدل سازی سطح (Surface Modeling)، ورق کاری (Sheet Metal)، طراحی تأسیسات (Routing)، تجهیزات برق و الکترونیک (Electrical)، قالب سازی (Molding) که امکانات جدیدی در اختیار کاربر  قرار می دهند. یکی از پرکاربرد ترین این منو ها، ورق کاری است. باید توجه داشت که دستورات اصلی مدلسازی سالیدورک (Features) ممکن است تفاوت های جزئی با دستورات منوهای جانبی داشته باشند. همچنین در نتایج طراحی مدل و نقشه نهایی، ممکن است که با دستورات بخش Features بتوان از منظر یک مدل ساده به نتیجه مشابهی دست یافت، اما توجه به این نکته ضروری است که سالیدورک تنها یک نرم افزار مدلسازی نیست. بلکه این نرم افزار در برخی مواقع پروسه تولید را نیز شبیه سازی می کند و محاسبات مربوط به آن را انجام می دهد.

برای سهولت کار با دستورات بخش ورق کاری سالیدورک، می توان از پنجره مخصوص به آن استفاده کرد. کافیست بر روی نوار ابزار اصلی برنامه کلیک راست کرده و از بین گزینه های باز شده، گزینه Sheet Metal را انتخاب کنید. برای سهولت در پیدا کردن پنجره ها و میانبر های مورد نیاز، این جعبه ابزارها به ترتیب حروف الفبا مرتب شده اند. همانگونه که مشاهده می کنید، جعبه ابزار هایی برای دسترسی راحت تر به منوهای ذکر شده وجود دارد که در زمان مناسب به توضیح آنها خواهیم پرداخت.

تصویر شماره 1 : جعبه ابزار (پنجره کمکی) برای دسترسی راحت تر به دستورات Sheet Metal

 

 

 

آموزش پیشرفته سالیدورک – ورق کاری (شیت متال)– بخش دوم

در درس گذشته توضیحاتی راجع به ورق کاری در سالیدورک ارائه شد. با آنکه تمامی دستورات گفته شده تا کنون برای ایجاد حجم و طراحی سه بعدی قطعه و دستوراتی که در دوره های پیشرفته برای ورق کاری، طراحی سطح و ... وجود دارد، در واقع در یک محیط است و شباهت بسیاری به هم دارند، اما تفاوت هایی نیز بین این دستورات وجود دارد. برای قدم اول، به اولین و ساده ترین دستور بخش ورق کاری می پردازیم. این دستور برای ایجاد یک صفحه مسطح از ورق با ضخامت قابل تعیین است. مانند دستور اکترود باس، ابتدا در یک صفحه اسکچ مورد نظر را می کشیم(برای این بخش اسکچ باید بسته باشد). سپس از نوار ابزار ورق کاری Base Flange/Tab را که آیکون آن به این شکل است  انتخاب می کنیم. در Property Manager ویژگی های اصلی ورقکاری تعیین می شود. ویژگی هایی مانند ضخامت ورق، شعاع خم و ضریب خم تعیین می شوند. در اینجا این توضیح است که نرم افزار سالیدورک در بسیاری از مدلسازی ها نه تنها یک نرم افزار مدلسازی صرف، بلکه یک مشاور برای طراح بوده و داده های لازم برای مدلسازی در آن، بسیار شبیه به واقعیت است. لذا بعد از تعیین ضخامت ورق، همانگونه که ورقی با ضخامت متغیر در واقعیت وجود ندارد، امکان تغییر ضخامت نیز در مدل وجود نخواهد داشت. البته می توان با استفاده از دستورات اصلی تب Features مدل بدست آمده را تغییر داد اما این کار در مواردی که برای ایجاد حجم باشد توصیه نمی شود. چون قطعه در واقعیت از حالت ورق کاری خارج می شود. البته دستوراتی مانند Extrude Cut و Hole Wizard طبیعتا مشکلی در پروسه ساخت قطعه و فهم نقشه ایجاد نخواهند کرد.

تصویر شماره 1 : پارامترهای مربوط به قطعه ورق کاری

پس از آن در درخت طراحی سالیدورک دو ویژگی ایجاد می شود. ویژگی اول با نام Sheet Metal و ویژگی دوم با نام Base-Flange که در قسمت Sheet Metal امکان تنظیم موارد اصلی ورق کاری وجود دارد و قسمت دیگر برای تعریف و تغییر دستور ایجاد حجم است.

 

 تصویر شماره 2 : ویژگی های ایجاد شده در درخت طراحی

 

 

 

آموزش پیشرفته سالیدورکز  ورق کاری– بخش سوم

در ادامه آموزش های پیشرفته سالیدورکز (سالیدورک) مربوط به ورق کاری، در این هفته توضیحات کاملتری در خصوص ایجاد ورق با استفاده از دستور Base Flange/Tab ارائه می شود. همانطور که در درس گذشته اشاره شد، در دستورات مربوط به ورق کاری سالیدورک امکان ساخت قطعه نیز بصورت خودکار توسط نرم افزار طبق کد های مبتنی بر اصول و قواعد ورق کاری محاسبه و بررسی گرفته می شود. بر اساس این اصول امکان ایجاد یک لوله توسط دستور Base Flange وجود ندارد. در اینجا ذکر نکته ای حائز اهمیت است که بر اساس این اصول چنانچه اسکچ اولیه برای ایجاد دستور مذکور یک اسکچ بسته باشد، با اجرای دستور، ضخامت ورق به آن افزوده می شود و شما در واقع مشابه دستوری مانند Boss extrude را اجرا کرده اید.

تصویر شماره 1 : ایجاد قطعه ورق کاری با استفاده از Base Flange در حالت اسکچ بسته

اما در صورتی که دستور Base Flange  با یک اسکچ باز ایجاد شود، نرم افزار سالیدورک بصورت پیش فرض مبنا را بر آن می گذارد که این اسکچ باز پروفیل عرضی یک قطعه ورق کاری است و در واقع با ایجاد حجمی در طول آن، دستوری مشابه با دستور Boss Extrude منتها در حالت Thinn Features را اجرا می کند. با این تفاوت که بصورت خودکار شعاع خم پروسه ورق کاری باید تعریف شود. در دستور Boss Extrude – Thinn Features گوشه های تیز قابل تعریف و ایجاد بود اما با دستور Base Flange شعاع خم نمیتواند صفر باشد. نکته دیگر اینکه شعاع خم کمترین شعاع ورق کاری است. یعنی قسمت داخلی خم با شعاع تعیین شده ایجاد می شود و شعاع خم قسمت خارجی قطعه ورق کاری با توجه به ضخامت تعیین شده برای ورق مشخص می شود.

 تصویر شماره 2 : ایجاد قطعه ورق کاری با استفاده از Base Flange در حالت اسکچ باز 

همانگونه که در تصویر شماره 2 مشخص است، در این حالت علاوه بر طول پروفیل، ضخامت ورق و شعاع خم باید تعیین شوند.

 

 

 

آموزش پیشرفته سالیدورکز  ورق کاری(شیت متال)– بخش چهارم

در دروس گذشته در خصوص مبانی ورق کاری و محیط Sheet Metal در سالیدورک توضیح داده شد. گفته شد که در محیط ورق کاری چه محدودیت هایی وجود دارد و یکی از بزرگترین این محدودیت ها که در واقع منتج از تشابه آن با محیط کارگاه و محدودیت ها ابزار تولید است، ایجاد پروفیل های بسته است. در محیط ورق کاری سالیدورک، امکان ایجاد مدل یک لوله یا قوطی وجود ندارد چراکه در دنیای واقعی نیز این مقاطع با استفاده از روش های دیگری تولید می شوند. البته تولید لوله با استفاده از ورق مرسوم است. بدین صورت که با استفاده از روش های مرسوم غلتک زدن، ابدا ورق به یک کمان شبیه به دایره کامل تبدیل می شود. البته این کمان همیشه دارای یک درز باز است که تا این مرحله در محیط ورق کاری نیز امکان شبیه سازی وجود دارد. مرحله بعد از آن در واقعیت جوش این درز لوله است. اما در هر صورت این کار در محیط ورق کاری سالیدورک امکان پذیر نیست. این مقدمه لازم بود تا دستور Loft در محیط ورق کاری را توضیح دهیم. با این مقدمه حتما متوجه شده اید که برای اجرای دستور Loft در محیط ورق کاری با چه محدودیت هایی نسبت به محیط معمولی مدلسازی مواجه هستید. بعضی از این محدودیت ها شامل این موارد است :

1-    اسکچ های ایجاد شده باید همگی باز باشند.

2-    تنها دو اسکچ برای لافت باید وجود داشته باشد.

3-    امکان تعریف یا استفاده از منحنی راهنما وجود ندارد.

4-    لبه تیز نمیتواند وجود داشته باشد و همه گوشه ها در اسکچ های تعریف شده باید دارای Fillet باشند.

در ورژن های قدیمی سالیدورکز، نرم افزار در بخش ایجاد حجم با استفاده از دستور Loft در محیط ورق کاری، محدودیت های کمتری داشت. اما در ورژن های جدید این محدودیت ها باعث شده که نتیجه کار طراحی، در محیط کارگاه قابلیت ساخت بهتری داشته باشد. در هفته آینده مطالب بیشتری راجع به دستور Loft محیط Sheet Metal ارائه خواهد شد. 

تصویر شماره 1 : ایجاد قطعه ورق کاری با استفاده از دستور Loft در محیط ورق کاری سالیدورک 

 

 

 

آموزش سالیدورک  ورق کاری(Solidwork Sheet Metal) بخش پنجم

در بخش گذشته توضیحات ابتدایی در خصوص ایجاد مدل اولیه ورق کاری با استفاده از دستور Loft در محیط سالیدورک ارائه شد. ارائه آن مطالب برای تفهیم محدودیت های محیط ورق کاری سالیدورکز لازم بود. در این درس بصورت دقیق تر به این قسمت می پردازیم. همان گونه که پیش تر ذکر شد، برای اجرای دستور Loft در محیط ورق کاری سالیدورکز، تنها نیاز به دو اسکچ دارید. البته این دو اسکچ لازم نیست حتما در دو صفحه موازی ایجاد شوند. پس از ایجاد اسکچ ها، دستور Loft را اجرا می کنیم. این دستور شامل چند بخش است که هر یک را بصورت جداگانه توضیح می دهیم :

1- نحوه تولید (Manufacturing Method): با توجه به نحوه تولید قطعه، نرم افزار بصورت خودکار پیش بینی ها و محاسباتی انجام می دهد تا مدل نهایی تا حد ممکن مشابه قطعه واقعی باشد. برای نحوه تولید دو گزینه خم کاری (Bent) و فرم دهی (Formed) وجود دارد. همانگونه که مشخص است تفاوت این دو گزینه در نحوه تولید می باشد. در صورتی که گزینه خم کاری انتخاب شود، نرم افزار بصورت خودکار حجم مورد نظر را با استفاده از تعداد قابل تعیینی از خم های ساده ایجاد می کند. در حالی که اگر گزینه Formed انتخاب شود، نرم افزار فرض می کند که قطعه مورد نظر با استفاده از پروسه قالب و پرس ایجاد شده است. به همین دلیل با انتخاب گزینه فرم دهی، خطوط خم کاری ناپدید می شوند. 

تصویر شماره 1 : ایجاد قطعه ورق کاری با استفاده از دستور Loft و شیوه ساخت فرم دهی در محیط ورق کاری سالیدورک 

 

تصویر شماره 2 : ایجاد قطعه با استفاده از دستور Loft و روش خم کاری در محیط ورق کاری سالیدورک 

2- انتخاب پروفیل ها : همان گونه که ملاحظه می کنید، در صورت انتخاب شیوه فرم دهی، تنها لازم است تا پروفیل ها و ضخامت ورق مشخص شود. اما در حالت خم کاری، ویژگی های دیگری نیز باید تعیین شوند. از آنجایی که تعداد این گزینه ها و تنوع آنها زیاد است، لازم می بینیم تا در درسی جدا گانه به آنها بپردازیم.

 

 

 

آموزش پیشرفته سالید ورکز – شیت متال(ورقکاری)– بخش ششم

بخش پایانی مطالب مربوط به دستور Loft در ورقکاری سالیدورک در این هفته گفته می شود. در درس های گذشته در خصو محدودیت های دستورات ورقکاری برای ایجاد درک صحیح از نحوه عملکرد این دستورات مطالبی گفته شد. دو شیوه اصلی ایجاد فرم ورقکاری در دستور Loft (از طریق فرم دهی یا پرس و از طریق خم کاری) با بیان تفاوت های ساختاری و ظاهری توضیح داده شد. در این درس با توجه به ویژگی های مختلف حالت خم کاری (Bent) به توضیح کاملتر جزئیات این دستور می پردازیم.

1- پروفیل ها: مانند حالت فرم دهی، در حالت خم کاری نیز ابتدا باید دو پروفیل انتخاب شوند.

2- مشخصات عملیات( Faceting Options): از آنجایی که در این حالت (شکل دهی از طریق خم کاری) باید با ایجاد چند خم شکلی شبیه به شکل منحنی ایجاد نمود، در واقع هر منحنی در این حالت از تعدادی خط و هر سطح منحنی از تعدادی سطح صاف تشکیل می شود. لذا شباهت و دقت در عملیات خم کاری با تعیین کردن یکی از مشخصه های اصلی زیر انجام می شود. مشخصه عملیات در واقع شاخص اندازه گیری و تلرانس های قابل قبول برای ایجاد منحنی از تعدادی خط است.:

  • Chord Tolerance: محدوده بین قوس و خط خم کاری. هرچه این عدد کمتر باشد، حجم نهایی به منحنی ها نزدیک تر است.
  • Number of Bends: تعداد خم ها بین هر دو خط صاف و منحنی مشخص می شود. طبیعی است که با افزایش تعداد خطوط، سطح نهایی نرم تر و به منحنی نزدیکتر خواهد بود.
  • Segment Length: طول خطوط و یا حداکثر عرض یک خم. بدیهی است که با کاهش طول خطوط، منحنی روانتر خواهد شد.
  • Segment Angle: حداکثر زاویه بین دو خط (بسته) در مجموعه پاره خط های تشکیل دهنده منحنی

 

تصویر شماره 1 : ایجاد قطعه با تعیین تعداد خم ها (Number of Bends) و تعداد 3 خم

 

 

تصویر شماره 2 : ایجاد قطعه با تعیین تعداد خم ها (Number of Bends) و تعداد 10 خم

 

3- مقدار عملیات (Facet Value): در این قسمت مقدار مشخصه ای را که در بخش مشخصات عملیات تعیین نمودیم، وارد می کنیم. قسمت Refer to end point بیانگر حالتی است که خمکاری تا لبه های تیز پیش روی داشته باشد یا نه. چنانچه تیک این قسمت را بزنید، با بریدن قسمت های انتهایی ورق، لبه های تیز بوجود می آید اما اگر تیک این گزینه برداشته شود، لبه ها گرد می شوند.

4- سایر مشخصات و ویژگی ها، به مانند ویژگی های بیان شده در دستور Base Flange است (ضخامت ورق، حداقل شعاع خم، فاکتورK) و نیازی به توضیح آنها نیست. 

تصویر شماره 3 : شکل بدست آمده بدون گزینه Refer To End Point

 

 

تصویر شماره 4 : شکل بدست آمده با گزینه Refer To End Point – به لبه های تیز دقت کنید.

 

 

 

آموزش ورقکاری در سالیدورکز - بخش هفتم - Solidworks Sheet Metal

در درس های گذشته مباحث مفصلی راجع به دستور loft در ورق کاری ارائه شد. در این جلسه و جلسات آینده از آموزش های پیشرفته سالیدورک به دستور Edge Flange یا ایجاد لبه پرداخته می شود. دستور ایجاد لبه با آیکون  در نوار ابزار ورق کاری مشخص است. لازم به ذکر است که دستورات اصلی ایجاد حجم در قسمت ورق کاری سالیدورک همان دو دستوری بودند که تا کنون توضیح داده شد (Base Flange / Lofted Bent) و برای اجرای این دستور و سایر دستورات محیط ورق کاری، ابتدا باید بخشی از قطعه ورق کاری توسط یکی از آن دو دستور ایجاد شود. برای ایجاد لبه، پس از اجرای دستور Edge Flange روی لبه مورد نظر کلیک کنید. در این قسمت بصورت پیش فرض شعاع خمی که در قسمت اصلی تعیین شده بود، در نظر گرفته می شود. چنانچه بخواهید شعاع خم متفاوتی داشته باشید، می توانید با برداشتن تیک گزینه Use Default Radius شعاع خم جدید را وارد کنید. قسمت های بعدی در ادامه توضیح داده می شوند:

1-    زاویه : بصورت پیش فرض زاویه لبه جدید نسبت به صفحه ای که لبه از آن گرفته شده 90 درجه است. اما امکان تعیین زاویه لبه جدید با صفحه مادر آن در این قسمت وجود دارد. همچنین می توان با انتخاب یک صفحه غیر موازی با صفحه مادر، لبه را بدون تعیین زاویه حدودی و تقریب زدن، موازی با آن صفحه ایجاد نمود.

2-    طول لبه : در همان ابتدای کار نکته ای که به ذهن خطور می کند این است که این طول از چه مبدأ ای در نظر گرفته می شود. چرا که با توجه به وجود زاویه خم، اندازه گیری از نقاط مختلف، نتایج مختلفی به همراه دارد. طراحان نرم افزار سالیدورک به این نکات توجه داشته اند و برای راحتی مهندسان، انواع حالات اندازه گیری را در نظر گرفته و گزینه مورد نظر آن را گنجانده اند. پس از تعیین جهت لبه و نوع ادامه لبه، مرجع اندازه گیری را می توان تعیین نمود. سه حالت برای مرجع اندازه گیری وجود دارد که به توضیح آن خواهیم پرداخت:

  • فاصله از لبه مجازی (Outer Virtual Sharp) : این فاصله یک مقدار فرضی است که از از نقطه تقاطع امتداد دو لبه بیرونی محاسبه می شود. واضح است که این فاصله توسط ابزار عمومی مانند کولیس قابل اندازه گیری نیست.
  • فاصله قسمت صاف (Inner Virtual Sharp) : فاصله قسمت صاف لبه که از انتهای قوس محاسبه می شود. این فاصله نیز بدلیل اینکه نقطه پایانی قوس در واقعیت بصورت یک خط دقیق مشخص نیست، با ابزار عمومی قابل اندازه گیری بصورت مستقیم نمی باشد.
  • فاصله از لبه مماسی (Tangent Bend) : این فاصله با استفاده از ابزاری مانند کولیس قابل اندازه گیری است و در زاویه 90 درجه با فصله از لبه مجازی برابر خواهد بود چراکه امتداد لبه مماس قوس و لبه مجازی یکسان خواهد بود.

تصویر شماره 1 : ایجاد لبه و گزینه های مختلف قابل تعیین برای لبه 

 

 

آموزش ورقکاری در سالید ورک – بخش هشتم – Solidworks Sheet Metal

آموزش های پیشین از بخش ورق کاری سالیدورک، مربوط به مبحث ایجاد لبه (Edge Flange) و بیان کلیات دستور به همراه توضیحاتی در خصوص حالت های مختلف و امکاناتی که این دستور در اختیار قرار می دهد بود. این هفته در ادامه مطالب مربوط به دستور ایجاد لبه در محیط ورق کاری سالیدورک (سالیدورکز) به بخش های دیگر این دستور می پردازیم. همانگونه که پیش تر توضیح داده شد بخش اول Flange Parameters بوده که در آن لبه مورد نظر، شعاع خم و پروفیل خم کاری بوده و بخش دوم زاویه لبه که نسبت به صفحه ای که لبه روی آن قرار دارد سنجیده می شود. بخش سوم نیز تعیین اندازه لبه و مبنای اندازه گیری آن بوده است. اکنون بخش چهارم نیز توضیح داده می شود.

4) موقعیت لبه (Flange Position) : این آپشن امکان تعیین وضعیت لبه را فراهم می کند. همانطور که توضیح داده شد آپشن سوم یا همان طول لبه (Flange Length) اندازه لبه را تعیین می کند و این اندازه با توجه به مبنای اندازی گیری، میتواند نتایج مختلفی داشته باشد. موقعیت لبه نیز در واقع محلی را که لبه از آنجا خم می شود مشخص می کند و شامل موارد زیر است:

  • Material Inside : در این حالت بیرونی ترین سطح لبه مماس با خط لبه انتخابی قرار می گیرد. 

تصویر شماره 1 : ایجاد لبه با گزینه Material Inside 

  • Material Outside : در این حالت سطح داخلی لبه با خط لبه انتخابی در یک راستا قرار می گیرد.
  • Bend Outside : در این حالت آغاز شعاع خم لبه از خط انتخابی خواهد بود. 

تصویر شماره 2 : ایجاد لبه با گزینه Bend Outside 

  • گزینه Offset : برای تعیین فاصله لبه از خط انتخابی که این فاصله می تواند به بیرون یا به داخل باشد. همچنین گزینه هایی برای انتخاب این فاصله مانند آپشن های دستور اکسترود وجود دارد (تا نقطه، تا صفحه، با فاصله از یک صفحه) 

تصویر شماره 3 : ایجاد لبه با استفاده از گزینه Offset 

5) مشخصات خم (Costume Bend Allowance) : این گزینه برای تعیین ویژگی های عملیاتی خم کاری است و قابل تعیین از طریق استاندارد ها و حالت های مختلف می باشد.

 

 

 

آموزش ورقکاری در سالیدورک – بخش نهم – Solidworks Sheet Metal

پس از آموزش نحوه ایجاد لبه در محیط ورق کاری سالیدورک، در این درس نحوه ایجاد لبه برگردان آموزش داده می شود. لبه برگردان برای اموری مانند پیشگیری از بریده شدن توسط لبه و یا ایجاد مقاومت موضعی در نظر گرفته می شود. دستور لبه برگردان (Hem) بسیار شبیه به دستور ایجاد لبه است. لذا برای انجام این کار دستور Hem را اجرا کرده سپس لبه مورد نظر را انتخاب می کنیم. پس از انتخاب لبه گزینه های دیگری ایجاد می شود که در ادامه توضیح داده می شود.

1-    ادامه لبه : در این قسمت مشخص می شود که طول لبه برگردان به چه صورت محاسبه شود.

  • Material Inside : چنانچه این گزینه را انتخاب کنیم مانند ایجاد لبه معمولی، خط خم به گونه ای انتخاب می شود که کل قطعه در نهایت هم راستای لبه قبلی باشد.
  • Bend Outside : در صورتی که این گزینه انتخاب شود، خم از لبه قبلی شروع می شود. برای درک بهتر تفاوت این دو گزینه، تصاویر زیر را مقایسه کنید. همانطور که ملاحظه میکنید حجم طوسی رنگ قسمت اصلی بدنه ورق و حجم زرد شفاف پیش نمایش حالت بعدی است. در تصویر زیر مشخص شده که با انتخاب گزینه Material Inside بالاترین قسمت لبه برگردان مماس بر سطح لبه قبلی خواهد بود.

تصویر شماره 1 : ایجاد لبه با انتخاب حالت Material Inside

انتخاب گزینه Bend Outside همانگونه که در شکل زیر مشخص است موجب ایجاد لبه از محل انتهایی لبه قبل می شود.

 

تصویر شماره 2 : ایجاد لبه با انتخاب حالت Bend Outside

در درس بعدی توضیحات کاملتری در خصوص دستور لبه برگردان داده می شود و قسمت نوع و اندازه لبه برگردان مفصل شرح داده خواهد شد.

 

 

 

آموزش ورقکاری در سالیدورک - بخش دهم -  Solidworks Sheet Metal

در دروس گذشته از آموزش های پیشرفته سالیدورک مربوط به بخش ورق کاری، نحوه ایجاد لبه و لبه برگردان توضیح داده شد. در این درس نحوه استفاده از دستور Miter Flange (لبه تاجی) آموزش داده می شود. برای توضیح بهتر این دستور ابتدا باید در خصوص محدودیت های دستور ایجاد لبه (Edge Flange) توضیح داده شود. در صورتی که بخواهید با استفاده از دستور ایجاد لبه چند لبه کنار هم ایجاد کنید، ملاحضه خواهید کرد که ایجاد دو لبه کنار هم در صورتی که تداخل داشته باشند امکان پذیر نیست و در کنار نام قطعه در درخت طراحی و دستور ایجاد لبه علامت هشدار ظاهر می شود. در واقع این علامت هشدار که در سالیدورکز بصورت خودکار ظاهر شده نشان دهنده تداخل دو ورق داخل همدیگر است. در صورتی که نخواهید این تداخلات ایجاد شود، میتوان از دستور Miter Flange استفاده کرد. برای این کار قبل و یا پس از اجرای دستور اسکچ مورد نظر لبه را ایجاد می کنیم. سپس در قسمت اول لبه های مورد نظر انتخاب می شود. چنانچه این لبه ها دارای خم ما بین همدیگر باشند، با نتخاب لبه های صاف، بصورت خودکار لبه های خم دار بین آنها انتخاب می شوند. همچنین گزینه انتخاب شعاع پیش فرض (Use Default Radius) یا در صورت تمایل انتخاب شعاع خم جدید، مانند بسیاری دیگر از دستورات محیط ورق کاری سالیدورک وجود دارد.

در قسمت بعدی یعنی Flange position امکان تعیین موقعیت فلنج وجود دارد. همچنین میتوان فاصله بین دو لبه را در بخش Gap Distance تعیین کرد.

تصویر شماره 1 : ایجاد لبه تاجی با شعاع خم 5 و گپ 0.2 میلیمتر

 

 

تصویر شماره 2 : ایجاد لبه تاجی با شعاع خم پیش فرض(2 میلیمتر) و گپ 2 میلیمتر

 

در قسمت بعدی این دستور فاصله از ابتدا و انتها (Start/End Offset) تعیین می شود. برای مثال در تصویر شماره 3 فاصله از ابتدا 3 میلیمتر و از انتها 10 میلیمتر تعیین شده است. 

تصویر شماره 3 : فاصله از ابتدا و انتها 

در انتهای دستور لبه تاجی برای امکان مقایسه بهتر، مشابه این عملیات با استفاده از دستور لبه نیز اجرا شده تا تفاوت آنها مشاهده شود. 

تصویر شماره 4 : مقایسه دستور Meter Flange با دستور Edge Flange در ایجاد لبه های سری کنار هم

 

 

 

آموزش ورقکاری در سالیدورک - بخش یازدهم -  Solidworks Sheet Metal

در این درس از آموزش های سالیدورک، نحوه ایجاد خم با استفاده از خط خم (Sketched bend) توضیح داده می شود. لازم است در خصوص تفاوت این دستور با دستور ایجاد لبه توضیحاتی داده شود. در دستور ایجاد لبه، یک قسمت از لبه ورق انتخاب شده و طبق معیارهای توضیح داده شده، لبه ای به آن اضافه می شود. اما با استفاده دستور ایجاد خم با خط، میتوان در ورق موجود خم ایجاد کرد. اهمیت این دستور زمانی مشخص می شود که چند ویژگی در هر سمت خم ایجاد شده باشند. در این هنگام مکان استفاده از دستور لبه Edge Flange وجود ندارد. حال برای اجرای دستور خم با استفاده از خط ابتدا روی آیکون مربوط به دستور کلیک کنید. برای این دستور باید خط خم را بکشید. لذا صفحه ای که میخواهید خط خم در آن باشد را به عنوان صفحه اسکچ انتخاب کنید. سپس خط خم را در آن ایجاد کنید. 

تصویر شماره 1 : قطعه ورق کاری برای خم کاری پس از ایجاد ویژگی های مختلف 

پس از آنکه خط خم را مشخص کردیم، از اسکچ خارج شده و در مرحله اول و در مستطیل Bend Parameters / Fixed Face سمتی از قطعه را که میخواهیم ثابت بماند، انتخاب می کنیم. لازم به ذکر است که تنها انتخاب صفحه ای قابل قبول است که اسکچ روی آن کشیده شده باشد. در قسمت بعدی که محل خم (Bend Position) است، مانند دستورات دیگر عمل می شود. سایر قسمت ها از جمله تعیین زاویه و شعاع خم نیز مانند گذشته قابل تعیین است.

تصویر شماره 2 : ایجاد خم با استفاده از خط خم 

 

  

 

آموزش ورقکاری در سالیدورک - بخش دوازدهم- Solidworks Sheet Metal

در درس گذشته از آموزش های سالیدورک، نحوه ایجاد خم با استفاده از خط خم (Sketched bend) توضیح داده شد. در این درس دستور Jog (جلو آمدگی) توضیح داده می شود. این دستور تا حدود زیادی به دستور خم با استفاده از خط شباهت دارد. ابتدا یک قطعه ورق کاری با استفاده از دستوراتی که آموخته اید ایجاد کنید. سپس روی یک قسمت آن یک بریدگی با استفاده از دستور برش (Extruded cut) ایجاد نمایید. از آنجایی که دستور برش در بخش ورق کاری کاملا مشابه با دستور برش در ایجاد حجم است، نیازی به توضیح بیشتر آن نمی باشد. پس از ایجاد لبه برش داده شده، دستور Jog را اجرا کنید. مانند دستور ایجاد خم با استفاده از خط خم، نیاز به یک اسکچ که خط خم در آن تعریف شده باشد دارید. میتوان این اسکچ را پس از اجرای دستور یا قبل از اجرای آن ایجاد نمود. باید دقت داشت که خط تعریف شده باید مستقیم باشد و از لبه قطعه یا بخشی از قطعه که قرار است دستور روی آن اجرا شود، بیرون نزند. پس از تکمیل اسکچ و بازگشت به Property Manager در قدم اول باید قسمتی از قطعه که ثابت می ماند انتخاب شود. این قسمت معمولا بخش بزرگتر ورق است. سپس در قسمت Jog Offset میزان برجستگی و بیرون آمدن لبه مشخص می گردد. در قسمت Dimension Position نیز معیار اندازه گیری برآمدگی مشخص می شود. پس از آن گزینه ای به نام Fixed projected length وجود دارد. در صورت زدن تیک این گزینه، لبه برآمده هم طول با حالت مسطح آن خواهد بود بدون توجه به اینکه میزان برآمدگی چقدر باشد. اما اگر تیک گزینه Fixed projected length را بردارید، نرم افزار سالیدورک بصورت خودکار طول برجستگی طول کلی زائده ورق کم می کند و لبه بوجود آمده طولی برابر آن خواهد داشت. برای همین میزان برآمدگی در این حالت محدود است. 

تصویر شماره 1 : ایجاد برآمدگی با روشن بودن گزینه Fixed projected length

 

 

تصویر شماره 2 : ایجاد برآمدگی در زمان خاموش بودن گزینه Fixed projected length با میزان مشابه آفست (برآمدگی)

سایر گزینه ها نیز مربوط به موقعیت خم و زاویه برآمدگی است که نمونه آن را می توان در زیر مشاهده کرد.

تصویر شماره 3 : تغییر زاویه برآمدگی و تعیین موقعیت خم با استفاده از گزینه های Jog position و Jog Angle 

 

 

 

آموزش ورقکاری در سالیدورکز - بخش سیزدهم - Solidworks Sheet Metal

بسیاری از بخش های ایجاد و ویرایش حجم از آموزش های ورق کاری سالیدورک در دروس گذشته بیان شد. این قسمت از آموزش های ورق کاری اختصاص می یابد به آموزش ویرایش و ساخت گوشه ها (Corners). در دروس گذشته توضیح مختصری در خصوص ایجاد لبه های بسته داده شد. در این درس و درس آینده بصورت کامل انواع گوشه ها توضیح داده می شود. پس از ایجاد یک حجم ورق کاری، با کلیک روی فلش کناری دستور گوشه ها (Corners)  که آیکون آن به شکل نمایش داده شده می باشد، چهار گزینه برای انتخاب وجود دارد که 2 گزینه در این درس و 2 گزینه دیگر در درس بعدی توضیح داده می شود.

1-Closed corner: با این دستور دو لبه کنار هم به هم نزدیک می شوند. واضح است همان طور که قبلا توضیح داده شد، در ورقکاری دو لبه نمیتوانند با هم تداخل داشته باشند. در مستطیل اول (Faces ti Extend) لبه ای را که می خواهیم ادامه پیدا کند انتخاب می کنیم(لبه اول). لبه دوم بصورت خودکار توسط سالیدورک انتخاب می شود (Faces to match). چنانچه خواستید این لبه را تغییر دهید، میتوانید با استفاده از همین قسمت، آن را انتخاب کنید. قسمت بعدی نوع گوشه (Corner Type ) است. در این قسمت وضعیت قرارگیری ادامه لبه ها نسبت به هم مشخص می شود. همانگونه که ملاحظه می کنید سه حالت وجود دارد. در قسمت بعدی میزان فاصله (Gap) بین دو ورق و میزان هم پوشانی مشخص می شود. در قسمت نهایی نیز بخشی برای وضعیت پایین لبه ها و سایر ویژگی ها وجود دارد.

 

تصویر شماره 1 : دستور Closed corner و آپشن ها و تنظیمات آن

 

2- Welded Corner: این دستور برای شبیه سازی جوش کاری لبه های ورق است. برای اجرای این دستور کافی است از طریق فلش موجود روی آیکون دستور گوشه ها، روی گزینه دوم Welded Corners کلیک کنید. در مستطیل اول (Corner to weld) گوشه ای را که می خواهید جوش کاری شود مشخص می کنید. در مستطیل دوم یک سطح، خط یا نقطه که جوشکاری در آن ادامه خاتمه پیدا میکند مشخص می شود. این بخش از دستور اختیاری است و چنانچه تعیین نشود بصورت خودکار جوشکاری کامل انجام می شود. در قسمت بعدی می توانید لبه جوشکاری را گرد کنید و شعاع آن را تعیین نمایید. دو گزینه آخر نیز برای نمایش حالت جوش و اضافه کردن علامت جوشکاری است.

تصویر شماره 2 : دستور Welded corner و آپشن ها و تنظیمات آن